Variational approximations in Bayesian model selection for finite mixture distributions
نویسندگان
چکیده
منابع مشابه
Variational approximations in Bayesian model selection for finite mixture distributions
Variational methods for model comparison have become popular in the neural computing/machine learning literature. In this paper we explore their application to the Bayesian analysis of mixtures of Gaussians. We also consider how the Deviance Information Criterion, or DIC, devised by Spiegelhalter et al. (2002), can be extended to these types of model by exploiting the use of variational approxi...
متن کاملVariational Bayesian Model Selection for Mixture Distributions
Mixture models, in which a probability distribution is represented as a linear superposition of component distributions, are widely used in statistical modeling and pattern recognition. One of the key tasks in the application of mixture models is the determination of a suitable number of components. Conventional approaches based on cross-validation are computationally expensive, are wasteful of...
متن کاملBayesian variable selection for finite mixture model of linear regressions
We propose a Bayesian method for variable selection in the finite mixture model of linear regressions. The model assumes that the observations come from a heterogeneous population which is a mixture of a finite number of sub-populations. Within each sub-population, the response variable can be explained by a linear regression on the predictor variables. So the whole data set can be modeled by a...
متن کاملMixture Approximations to Bayesian Networks
Structure and parameters in a Bayesian network uniquely specify the probability distribution of the modeled domain. The locality of both structure and probabilistic information are the great benefits of Bayesian networks and require the modeler to only specify local information. On the other hand this locality of information might prevent the modeler —and even more any other person— from obtain...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Computational Statistics & Data Analysis
سال: 2007
ISSN: 0167-9473
DOI: 10.1016/j.csda.2006.07.020